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Abstract

Toll-like receptor (TLR) signaling is vital for antimicrobial macrophage function, and its dysregulation is associated with diseases such as
lupus, multiple sclerosis, pulmonary fibrosis, and cancer. The Src-family kinase Lyn may have net activating or inhibitory effects on TLR
signaling, yet distinct functions of the Lyn splice variants LynA and LynB in TLR signaling have not been investigated. We used isoform-
specific Lyn knockout mice (LynA*® and LynB*©) to interrogate the contribution of each isoform to TLR signaling in bone-marrow-derived
macrophages. Bulk RNA sequencing and cytokine analyses revealed that complete Lyn deficiency (Lyn*°) dampened TLR4- and TLR7-
induced inflammatory gene expression and production of tumor necrosis factor but enhanced the expression of genes responsible for
synthesizing the extracellular matrix and promoting proliferation. Despite reduced expression of total Lyn in single-isoform-knockout
bone-marrow-derived macrophages, expression of either LynA or LynB alone was sufficient to preserve a wild-type-like transcriptome
at steady state and after treatment with the TLR7 agonist R848. However, LynA®® and LynB¥° macrophages did have impaired
production of tumor necrosis factor in response to the TLR4 agonist lipopolysaccharide. Additionally, LynA*® and LynB*©
macrophages were as hyperproliferative as Lyn*® cells. These data suggest that Lyn promotes macrophage activation in response to
TLR signaling and restrains aberrant proliferation and matrix deposition in a dose-dependent rather than isoform-specific manner.
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1. Introduction via synthesis of matrix metalloproteases (MMPs), collagens, and
laminins. &

Signaling downstream of TLRs can be transduced via the adaptor
protein MYD88, and TLR4 also signals through the adaptor protein
TRIF.?>'® MYD88-dependent TLR4 signaling progresses through the
MAPK and NF-«B pathways, culminating in the nuclear translocation

of transcription factors NF-kB, CAMP response element-binding pro-

Macrophages play key roles in pathogen defense, wound healing,
and tissue maintenance. Dysregulation of intracellular signaling
is associated with infection,® autoimmunity,** fibrosis,*®and
cancer progression.””® Yet mechanistic questions about how cells
restrain pathological activation remain. Macrophage signaling
can be initiated by transmembrane toll-like receptors (TLRs),

which detect extracellular ligands (eg TLR4) or endosomal ligands
(eg TLR7).'>* TLRs respond to a variety of stimuli, including bac-
terial membrane components such as lipopolysaccharide (LPS),
RNA and DNA motifs such as GU-/AU-rich single-stranded RNA
and unmethylated CpG DNA,'*'® and endogenous ligands such
as high mobility group box 1 (HMGB1) and heat-shock pro-
teins.*!® Receptor ligation drives a diverse array of cellular re-
sponses: inflammation results from the production of cytokines,
such as tumor necrosis factor (TNF), interleukins (ILs), and inter-
ferons (IFNs). Chemokines, such as C-C motif chemokine ligands
(CCLs) and C—X-C motif chemokine ligands (CXCLs), are secreted,
recruiting immune cells.’® TLRs also trigger cell proliferation via
cyclin production'” and extracellular-matrix (ECM) remodeling

tein (CREB), and AP-1 family members c-Jun and c-Fos,** whereas
TRIF-dependent signaling effectuates interferon regulatory factor
(IRF)3 translocation.* TLR7 drives NF-kB, AP-1, IRF5, and IRF7 trans-
location.?” Even though these transcription factors regulate unique
subsets of target genes, they converge on shared pathways. NF-«kB in-
duces inflammatory gene expression alone (egIl1b) and in cooperation
with IRFS (eg Tnf, 116, 1112).2* AP-1 drives the expression of ECM-remod-
eling genes (eg Mmp9), while also promoting Tnf and 16 transcription.**
CREB regulates macrophage survival through Serpinb2, Bcl2, 1110, and
Dusp expression.®>?® IRF3 induces type-I IFN responses through
Ifnb1 expression and chemokine expression (eg Cxcl10, Ccl5),” whereas
IRF7 induces Ifnal expression in addition to Ifnb1.%® Despite advances
in our understanding of TLR signaling, the upstream regulatory
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factors that dictate selective activation and integration of these tran-
scriptional programs remain incompletely defined.

The Src-family kinase (SFK) Lyn has emerged as a key modula-
tor of TLR signaling, but the breadth of TLR-induced transcription-
al programs that are regulated by Lyn in macrophages is unclear.
Lyn can activate or inhibit TLR signaling,’*! and cell-specific
contributions in vivo are complex. Global Lyn-knockout (Lyn*©)
mice develop a systemic, lupus-like disease, characterized by
myeloproliferation and splenomegaly, inflammation, autoreac-
tive antibodies, and glomerulonephritis.?*~* Progression to auto-
immunity depends on the inflammatory environment created by
IL-6, likely produced by hyperactive B cells,® and B-cell-specific
loss of Lyn is sufficient to drive the disease.’® Interestingly, den-
dritic cell (DC)-specific loss of Lyn is also sufficient to drive dis-
ease, rescued by secondary knockout of MYD88* or CARD9.*®
Lyn can inhibit TLR signaling in myeloid cells, including DCs*"—?
and macrophages,*>*! with Lyn*© cells producing more type-I
IFNs (IFNa and IFNB), TNF, and IL-6 than wild-type (WT) cells.
Lyn may phosphorylate IRFs, leading to their polyubiquitination
and degradation, thereby suppressing the production of type-I
IFNs.*>*® However, this mechanism may be unique to classical
DCs (cDCs), as Lyn*® plasmacytoid DCs (pDCs) produce fewer in-
flammatory cytokines than WT.?? Moreover, macrophage-specific
loss of Lyn does not induce autoinflammatory disease.*® Thus, the
impact of Lyn on TLR-induced cellular responses may differ by
cell type.

In support of potential activating functions of Lyn, overex-
pressing Lyn in mice also leads to a lupus-like inflammatory dis-
ease,** and antibody-secreting cells from human lupus patients
can have increased LYN expression.*” In myeloid cells, including
macrophages, Lyn activates inflammatory signaling path-
ways.***” Specifically, TLR-driven production of inflammatory cy-
tokines is dependent on Lyn.**! Given the multifunctional
nature of Lyn in cell signaling and inflammatory disease and the
diverse signaling programs controlling TLR activation and cellular
responses, the role of Lyn in macrophage TLR signaling cascades
requires further investigation.

Lyn RNA is alternatively spliced to produce two isoforms, LynA
and LynB, which differ by an insert in the N-terminal unique re-
gion of LynA.>? LynA is uniquely regulated through polyubiquiti-
nation and degradation®®** and may be the dominant driver of
mast-cell degranulation.” Conversely, overexpressed LynB asso-
ciates more with inhibitory signaling proteins.>® Our group gener-
ated isoform-specific LynA*® and LynBX® mice and discovered
that LynB*© and female LynA*® mice develop lupus with age.**
We found myeloproliferation and increased expression of CD11c
on macrophages in LynA*® and LynB*® mice. Interestingly, fe-
male LynA*® macrophages expressed higher amounts of the acti-
vation marker CD80/86 relative to LynA*? male and WT cells. Still,
few studies have examined isoform-specific functions of Lyn in
macrophages, and the roles of LynA and LynB in TLR signaling
were previously unknown.

To investigate specific functions of LynA and LynB in macro-
phage TLR responses, we performed RNA sequencing and cyto-
kine analyses in single-isoform and complete Lyn*©
bone-marrow-derived macrophages (BMDMs) at rest or treated
with TLR4 or TLR7 agonist. While a complete loss of Lyn impaired
TLR4- and TLR7-induced expression of inflammatory genes and
production of TNF protein, expression of either LynA or LynB
was sufficient to preserve WT-like transcriptional responses and
cytokine production. However, LynA®® and LynB*® macrophages
did have partially impaired TNF production in response to TLR4
stimulation. Additionally, all Lyn-deficient macrophages were

hyperproliferative, including isoform-specific-knockout cells.
These data suggest that Lyn promotes macrophage activation
downstream of TLRs and restrains aberrant proliferation in a
dose-dependent rather than isoform-specific manner.

2. Materials and methods

2.1 Mouse strains and housing

C57BL/6-derived LynA®®, LynB*°, and Lyn*® mice have been de-
scribed previously.**** The LynA®® and LynB*° mice used for
this study were hemizygous F1 progeny of single-isoform and
Lyn*C breeders (LynA~"LynB*~ and LynB~~LynA*"~) to ensure
WT-like expression of the remaining isoform.** Animal use was
compliant with University of Minnesota/American Association
for Accreditation of Laboratory Animal Care and National
Institutes of Health policy, under Animal Welfare Assurance
number A3456-01 and Institutional Animal Care and Use
Committee protocol number 2209-40372A. Mice were housed in
a specific-pathogen-free facility under the supervision of a li-
censed Doctor of Veterinary Medicine and supporting veterinary
staff. Breeding and experimental mice were genotyped via real-
time polymerase chain reaction (Transnetyx, Memphis, TN).
Genotyping was confirmed by immunoblotting for Lyn, when
appropriate.

2.2 Generation of BMDMs

BMDMs were generated as described previously.”*°° Briefly, bone
marrow was isolated from femora and tibiae of mice, treated in
hypotonic solution to remove erythrocytes, seeded in
non-tissue-culture-treated polystyrene plates (CELLTREAT,
Ayer, MA; Cat. 229653), and cultured at 37°C, 10% CO; in
Dulbecco’s Modified Eagle’s Medium (DMEM, Corning Mediatech,
Manassas, VA; Cat. 10-017-CM), with final concentrations of 10%
heat-inactivated fetal bovine serum (FBS, Omega Scientific,
Tarzana, CA; Cat. FB-11), 1mM sodium pyruvate (Corning
Mediatech; Cat. 25-000-CI), 6 mM L-glutamine (Gibco, Grand
Island, NY; Cat. 25030-081), 1% Penicillin-Streptomycin (179 and
172 pM, respectively, Sigma-Aldrich, St. Louis, MO; Cat.
P4333-100ML), and 5% CMG14-12 supernatant as a source of
macrophage colony-stimulating factor (M-CSF). After 7 d of cul-
ture with medium refreshment, BMDMs were harvested with
enzyme-free cell dissociation buffer (Gibco, Grand Island, NY;
Cat. 13150-016), washed with phosphate-buffered saline (PBS,
Cytiva, Logan, UT; Cat. SH30256.01), and counted for replating.

2.3 Treatment with TLR agonists

BMDMs were resuspended in culture medium without M-CSF, re-
plated, and rested overnight. Cells were then treated with me-
dium alone (-) or with 2 ng/ml LPS from S. Minnesota R595 (List
Biological Laboratories, Campbell, CA; Cat. 304) or 20 ng/ml R848
(InvivoGen, San Diego, CA; Cat. tlrl-r848-1). Signaling was
quenched at endpoints described below, and samples were stored
at —80°C.

2.4 RNA sequencing

After 2h of treatment, cells were washed in PBS and lysed in
TRIzol (Thermo Fisher Scientific, Waltham, MA; Cat. 15596018).
RNA was isolated via chloroform extraction followed by RNeasy
Mini Kit (Qiagen, Hilden, Germany; Cat. 74104). Samples from
four mice of each genotype (two male and two female) were
subjected separately to poly-A selection to isolate mRNA and
then bulk, next-generation sequencing (I[llumina NovaSeq 6000
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platform, performed by Azenta Life Sciences, South Plainfield, NJ).
Sequence reads (17.5-27 x 10° per sample) were trimmed using
Trimmomatic v.0.36 and mapped to the ENSEMBL Mus musculus
GRCm38 reference genome using STAR aligner v.2.5.2b. Unique
hit counts were determined using featureCounts in the Subread
package v.1.5.2 for downstream analysis of differential gene
expression.

2.5 DESeq2 analysis

Genes were filtered in R v.4.4.3 to retain only those with >10
counts in >3 of the 4 biological replicates within any genotype/
treatment. Differential expression analysis was performed
using the DESeq2 package v.1.46.0, with samples grouped by geno-
type and treatment in the design formula (~ Group).
Variance-stabilizing transformation (VST) was applied to normal-
ized counts for visualization and unsupervised clustering.
Principal component analysis (PCA) was conducted on the 500
most variable genes across all samples using the prcomp function
in the stats package of base R, and results were visualized using
the ggplot function in the ggplot2 package v.3.5.2, with samples col-
ored by genotype and treatment. Differentially-expressed genes
(DEGs) were identified using the results function in DESeq2, and
pairwise comparisons between genotypes within each treatment
condition were performed. The results function in DESeq?2 uses
the Wald test to calculate log,(fold-changes) and P-values and
the Benjamini-Hochberg False Discovery Rate correction to calcu-
late adjusted P-values. Genes were defined as differentially ex-
pressed if they met both a Benjamini-Hochberg adjusted P-value
<0.05 and an absolute fold-change >1.5. DESeq2 output was anno-
tated using ENSEMBL gene IDs mapped to gene symbols using the
biomaRt package v.2.62.1. To assess shared and condition-specific
differential gene expression between genotypes, Venn diagrams
were created using the venn.diagram and draw.triple.venn functions
in the VennDiagram package v.1.7.3, and plots were rendered using
the griddraw function in the grid package of base
R. VST-normalized gene expression was visualized using the
pheatmap package v.1.0.12, with row-wise scaling, Euclidean clus-
tering of genes, and a scaled color palette to represent relative ex-
pression levels. The total distribution of differential gene
expression between genotypes was visualized with volcano plots
generated using the ggplot function in ggplot2, with log,(fold-
change) on the x-axis and logw(adjusted P-value) on the y axis.
Threshold lines were included to denote significance cutoffs (ad-
justed P-value <0.05 and an absolute fold-change >1.5), and color-
coding was applied to distinguish relative expression changes,
with red indicating significantly increased expression, blue indi-
cating significantly decreased expression, and all others in gray.

2.6 Gene set enrichment analysis

The gene set enrichment analysis (GSEA) desktop application
v.4.4.0 (Broad Institute, Cambridge, MA) was used to evaluate
pathway-level differences between genotypes at steady state
and after LPS or R848 treatment. VST-normalized gene-expression
matrices (generated from DESeq2) were used as input, with genes
ranked by signal-to-noise. Comparisons were made between gen-
otypes within each treatment condition using phenotype-based
permutation (n=1,000). Gene identifiers were mapped from
ENSEMBL IDs to official gene symbols using the MSigDB v.2025.1
Mm.chip annotation file. Enrichment testing was performed using
29 hallmark gene sets of interest or 16 curated ECM-related gene
sets. Gene sets with <15 or >500 genes were excluded.
Enrichment was weighted, and results were filtered and
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visualized using default GSEA settings. Significant gene set enrich-
ment was defined by a nominal P-value of <0.1.

2.7 qRT-PCR analysis

After 2-8 h of treatment and cell lysis, RNA from TRIzol lysates
was converted into complementary DNA via gScript cDNA
Synthesis (QuantaBio, Beverly, MA; Cat. 95047-500). Products
were diluted 1:10 in ultrapure water and subjected in technical
triplicate to gRT-PCR using QuantStudio3 PCR (Thermo Fisher
Scientific) with PerfeCTa SYBR Green SuperMix (Thermo Fisher
Scientific; Cat. 4385616). For each reaction, an equivalent amount
of water in triplicate was substituted for cDNA as a negative con-
trol. Threshold-cycle (Ct) values were normalized to the house-
keeping gene Cyclophilin, and mRNA fold changes were
calculated using the AACt method.>” Primer sequences (forward/
reverse 5-3'): Cyclophilin (TGCAGGCAAAGACACCAATG/GTGCT
CTCCACCTTCCGT), Tnf (CCTCTTCTCATTCCTGCTTGTG/TGGGC
CATAGAACTGATGAGAG), Il1b (GCAACTGTTCCTGAACTCAACT/
ATCTTTTGGGGTCCGTCAACT), 16 (TGTTCTCTGGGAAATCGTG
GA/CTGCAAGTGCATCATCGTTGT), I112b (AGTGTGAAGCACCAA
ATTACTC/CCCGAGAGTCAGGGGAACT).

2.8 Immunoblotting and quantification

After up to 30 min treatment, protein phosphorylation was as-
sessed via immunoblotting, as described previously.>® Briefly,
BMDMs were collected, lysed with SDS sample buffer, sonicated,
treated with dithiothreitol, and boiled. Approximately 3.5 x 10*
cell equivalents were run in each lane of a 7% NuPAGE tris-acetate
gel (Invitrogen, Carlsbad, CA; Cat. EA03585BOX) and transferred to
an Immobilon-FL polyvinylidene difluoride membrane (EMD
Millipore, Burlington, MA; Cat. IPFL00010). REVERT 700 Total
Protein Stain (LI-COR Biosciences, Lincoln, NE; Cat. 926-11021)
was used to assess whole-lane protein content. After reversal of
the total protein stain, membranes were treated 1h with
Intercept Blocking Buffer (LI-COR Biosciences; Cat. 927-60001)
and then incubated with appropriate primary antibodies over-
night at 4°C, followed by incubation with near-infrared secondary
antibodies for 1 h at room temperature. Blots were visualized us-
ing an Odyssey CLx near-infrared imager (LI-COR Biosciences) and
analyzed using ImageStudio Software (LI-COR Biosciences).
Signals were background-subtracted and corrected for whole-
lane protein content. Values were then normalized to the untreat-
ed control for each replicate and genotype. Primary Antibodies:
P-IKKo/p (Cell Signaling Technology (CST), Danvers, MA; Cat.
2697S), P-AKT (CST, Cat. 9271S), P-JNK (CST, Cat. 4668T), P-ERK
(CST, Cat. 4370S), ERK (CST, Cat. 9107S). Secondary Antibodies:
Donkey anti-mouse IgG 680RD (LI-COR Biosciences, Cat.
926-68072), Donkey anti-rabbit IgG 700CW (LI-COR Biosciences,
Cat. 926-32213).

2.9 Quantification of TLR protein

BMDMs were resuspended in flow cytometry buffer comprising
PBS, 2% heat-inactivated FBS, and 2 mM ethylenediaminetetra-
acetic acid, and cells were stained for viability with Ghost Dye
Red 780 (Tonbo Biosciences, San Diego, CA; Cat. 13-0865-T500).
Cells were then blocked with Fc Shield, Clone 2.4G2 (Tonbo
Biosciences; Cat. 70-0161-U500) and stained for surface TLR4
with BV650 anti-mouse CD284/MD-2 Complex, Clone MTS510
(BD Biosciences, Franklin Lakes, NJ; Cat. BDB740615) in flow-cy-
tometry buffer. Cells were then washed and treated with
Cytofix/Cytoperm (BD Biosciences; Cat. 554722), washed with BD
Perm/Wash buffer (BD Biosciences; Cat. 554723), and stained for
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intracellular TLR7 with PE anti-mouse CD287, Clone A94B10
(BioLegend, San Diego, CA; Cat. 160003). Flow cytometry was per-
formed on a BD LSRFortessa or LSRFortessa X-20 cytometer, and
data were analyzed using FlowJo software v.10.9.0 (FlowJo,
Ashland, OR).

2.10 Quantification of cell proliferation

BMDMs were generated from three mice of each genotype and re-
suspended in culture medium without M-CSF. PBS-diluted
CellTrace Violet (CTV, Thermo Fisher Scientific; Cat. C34557)
was added to cell suspensions. Cells were washed and resus-
pended in culture medium with M-CSF, plated in untreated poly-
styrene plates, and incubated 96 h at 37°C in 10% CO,. Cells were
then washed, stained for viability, and analyzed via flow cytome-
try, as described above. The Proliferation Modeling function in
FlowJo was used to quantify division within the “Live” cell gate.

2.11 Enzyme-linked immunosorbent assay
(ELISA)

TNF secretion by BMDMs over 24 h was analyzed using the mouse
TNF DuoSet ELISA Kit according to manufacturer’s instructions,
with a seven-point standard curve (R&D Systems, Minneapolis,
MN; Cat. DY410). A Tecan Infinite 200 PRO was used to determine
the absorbance of each well at 450 nm (Ayso), with 540-nm back-
ground correction. The average zero standard was subtracted
from the average of each standard or sample. A standard curve
was created by plotting log(A4so) by log[standard] and applying
linear regression with GraphPad Prism v.9.1.2 (GraphPad
Software, Boston, MA).

2.12 Graphing and statistical analysis

Graphing and statistics were performed using GraphPad Prism
software. In scatter plots and bar graphs, data are presented as
mean + standard deviation (SD) or standard error of the mean
(SEM), with significance assessed via two-way ANOVA with
Tukey’s multiple comparisons test. P-value <0.05%, <0.01*,
<0.001™, <0.0001"**, ns indicates no significant differences.
Outlier analyses were performed on ELISA data using unbiased ro-
bust regression and outlier elimination (ROUT) with
Q=1%. n indicates the number of biological replicates, where
each replicate represents cells from an individual mouse. In
graphs depicting proliferation or ELISA data, squaresindicate cells
derived from male mice, and circles indicate cells derived from fe-
male mice.

3. Results

3.1 Expression of either LynA or LynB in
macrophages is sufficient to maintain a

WT-like transcriptome

We performed RNA sequencing on WT, LynA®®, LynB*®, and com-
plete Lyn*° BMDMs following a 2-h incubation in medium alone or
with the TLR4 agonist LPS or TLR7 agonist R848. PCA revealed that
treatment with either LPS or R848 induced profound transcrip-
tional changes that were more dominantin defining the transcrip-
tome than the cell genotype (Fig. 1A). However, Lyn*® BMDMs
were shifted closer than other genotypes to steady-state tran-
scriptomic profiles. Many genes were expressed differentially ac-
cording to treatment condition and genotype (Fig. 1B). Although
LynA and LynB are differentially regulated posttranscriptional-
ly>*** and contribute differentially to autoimmune disease and
monocyte/macrophage phenotypes,®* the transcriptional profiles

of LynA*® and LynB*® BMDMs were almost identical to each other
atsteady state (Fig. 1C) and indistinguishable after treatment with
TLR4 agonist (Fig. 1D) or TLR7 agonist (Fig. 1E). Therefore, we fo-
cused subsequent analyses on differences between each Lyn
knockout and WT.

Even in the absence of TLR stimulation, Lyn*® and WT BMDMs
had >600 DEGs, reflecting the pivotal role of Lyn in regulating the
macrophage steady state (Fig. 2A). Whereas the complete loss of
Lyn led to significant upregulation or downregulation of many
gene products, loss of either LynA or LynB alone had modest,
intermediate effects (Fig. 2B). Lyn®® BMDMs had reduced expres-
sion of genes encoding pro-inflammatory cytokines, such as Tnf,
Il1a, and Il1b, and chemokines, such as Ccl2, Ccl3, Ccl7, and
Cxcl10 (Fig. 2C). Complete loss of Lyn also affected expression of
genes encoding proteolytic enzymes and structural proteins,
with decreased Mmp8, Mmp12, and Mmp14 and increased Col4al,
Col4a2, and Lama3. Lyn®® cells also had increased expression of
Top2a, Tk1, Stmnl, Odcl, and Ligl, which encode critical enzymes
for DNA synthesis, replication, and repair, as well as cell-cycle
progression and mitosis.

There were few differences in the steady-state transcriptomes
of WT BMDMs and LynAX® (Fig. 2D) or LynBX® (Fig. 2E). However,
LynAK® cells had reduced expression of Ccl2, Ccl7, and Mmp14,
and both LynAX® and LynB*® cells had increased expression of
Col4al (Fig. S1A). These findings suggest that Lyn*® BMDMs in cul-
ture already have transcriptomic changes that alter their function
and responses to stimuli. Expression of either Lyn isoform, how-
ever, is sufficient to restore a WT-like transcriptome in resting
cells.

3.2 Few receptor-specific transcriptional
differences distinguish TLR4 and TLR7 signaling
in macrophages

We assessed the highest-significance DEGs in WT BMDMs after a
2-h treatment with medium alone or with the TLR4 agonist LPS or
the TLR7 agonist R848. For these studies, we chose agonist doses
that induced comparable upregulation of Tnf in WT BMDMs
(Fig. S2A inset). Consistent with previous studies,”® % treatment
with either LPS or R848 drove upregulation of genes encoding
pro-inflammatory cytokines (eg Tnf, Illa, Il6, Il12a, I112b, 1123a,
Acod1), chemokines (eg Ccl4, Ccl5, Cxcll, Cxcl2, Cxcl3), mitogens
(eg Csf2), and matrix metalloproteases (eg Mmp13, Fig. 3A, Fig.
S2A). Either TLR pathway also drove downregulation of Cxcr4,
which, in vivo, leads to myeloid-cell egress from the bone marrow
into peripheral blood.®? Focusing on transcriptomic differences
uniquely induced by the TLR4 or TLR7 pathway, we found that
LPS treatment drove interleukin and chemokine genes, such as
1133 and Cxcl9, and triggered a greater degree of gene induction
than R848, with more upregulation of Cxcl10 (Fig. 3B, Fig. S2B).
Macrophage-produced CXCL9 and CXCL10 are critical for anti-
tumor T-cell infiltration and response to immune checkpoint
blockade.®® Interestingly, R848 uniquely induced downregulation
of several genes, including Ankrdé, Mcc, Trim15, and Trim25
(Fig. 3C, Fig. S2C). TRIM25 shifts the balance of signaling-pathway
activation in macrophages, favoring MAPK and anti-inflammatory
signaling over NF-kB activation.®* R848 also drove upregulation of
Ifngrl, [110ra, and Sirpa. A delicate balance of signaling through the
IL10 receptor and SIRPa regulates inflammation-induced phago-
cytosis of healthy cells in macrophages.®® Despite these receptor-
specific differences in gene induction, most of the significant tran-
scriptomic changes induced by TLR4 or TLR7 stimulation of WT
BMDMs are shared between these two receptors.
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Fig. 1. Expression of either LynA or LynB alone is sufficient to reverse transcriptomic dysregulation induced by complete Lyn knockout in BMDMs. (A)
PCA of bulk RNA sequencing data from WT (circle), LynA*® (square), LynB¥® (triangle) or complete Lyn*® (plus) BMDMs treated 2 h with medium alone
(-, gray), 2 ng/ml LPS (purple), or 20 ng/ml R848 (orange); cells were prepared independently from 4 individual mice (2 male and 2 female from each
genotype) and treated and sequenced separately (n =4). Data set: 500 most variable genes, calculated from VST-normalized hit counts using prcomp in R.
PC1 and PC2 account for 96.4% of the total variance. (B) Overlap of significant DEGs between Lyn knockout and WT BMDMs across all treatment
conditions. DEGs were calculated from pairwise comparisons using DESeq2 and defined by an absolute fold-change >1.5 and an adjusted P-value <0.05.
(C-E) Volcano plots highlighting DEGs between LynA® and LynB*° BMDMs at (C) steady state and after (D) LPS or (E) R848 treatment.

3.3 Lyn deficiency broadly impacts TLR-induced
gene transcription in macrophages

Neither mRNA expression of TLR-associated proteins (Fig. S3A),
nor the protein levels of TLR4 and TLR7 (Fig. S3B and C) were al-
tered by Lyn knockout, enabling a direct comparison of TLR sig-
naling responses. We therefore compared the transcriptomes of
WT, LynA*®, LynB*®, and Lyn*® BMDMs treated with TLR4 or
TLR7 agonists. LPS or R848 treatment of Lyn*® BMDMs led to dys-
functional modulation of 371 genes that were also dysregulated at
steady state (eg Tnf, Il1a, Il1b, Ccl2, Ccl3, Cxcl10, Mmp8, Mmp12,
Mmp14, Col4al, Col4a2, Lama3). However, Lyn*® BMDMs failed to
modulate the expression of 104 additional gene products after ei-
ther TLR4 or TLR7 stimulation (Fig. 4A), including failed upregula-
tion of pro-inflammatory factors (eg Il12b, I1123a, P2ry13, P2ryl4,
Pilrb1, Tnfsf15) and chemokine-encoding genes (eg Ccl22, Ccl24),
coupled with supraphysiological induction of inflammation-
suppressing genes (eg Traip, Sigirr, Fig. 4B). Additionally, Lyn*®
cells had impaired induction of genes encoding matrix metallo-
proteases (eg Mmp13) and enhanced induction of genes encoding
structural proteins (eg Lama5, Plod2, Fgl2). Again, these defects
were rescued by expression of either LynA or LynB, although
LynAK® and LynB*° BMDMs did have increased Lama5 expression,
and LynB*° BMDMs had increased Notch4 expression (Fig. S1B).

To assess TLR-specific requirements for Lyn, we examined
LPS-specific and R848-specific DEGs in WT and Lyn*® BMDMs.
We identified 234 DEGs found only in LPS-treated samples
(Fig. SA). Gene products such as Jund (an AP-1-family transcription
factor), Nuprl (an autophagy suppressor), and Pim1 (a Ser/Thr kin-
ase thatrestricts cell growth) were uniquely downregulated, while
Traip (an E3 ubiquitin ligase) and Pkp3 (plakophilin, a component
of desmosomes) were upregulated (Fig. 5B). In WT and Lyn*°
BMDMs, we identified 205 DEGs found only in R848-treated sam-
ples (Fig. 5C). Gene products such as Tnfsf9 (4-1BBL, promoter of
T-cell co-stimulation) and Mertk (receptor tyrosine kinase) were
uniquely downregulated, while Jak3 (tyrosine kinase mediating
cytokine responses), Jam2 (cellular-junction adhesion molecule),
and Timp1 (inhibitor of MMP activity) were upregulated (Fig. 5D).
There were few LPS-specific DEGs in LynA® or LynB¥® BMDMs
and WT, but both genotypes had decreased expression of
Serpinb9 (Fig. S1C). There were no remarkable R848-specific DEGs
in the single-isoform knockouts.

Despite the presence of TLR-specific responses to Lyn deletion,
no clear segregation of receptor-specific signaling pathways
emerged, and most of the DEGs were not associated with canonic-
al TLR signaling cascades, such as NF-«xB-, MAPK-, or IRF-driven
transcription. Nevertheless, we found significantly impaired
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Fig. 2. Atsteady state, Lyn*® BMDMs have decreased expression of genes encoding cytokines and proteases and increased expression genes encoding
structural proteins and cell-cycle machinery. (A) Venn diagram highlighting DEGs in WT and Lyn*® BMDMs at steady state (medium alone, -). (B) Heat
map showing relative expression of the 50 highest-significance DEGs in WT and Lyn knockout BMDMs at steady state. Heat maps in this and other
figures were generated using pheatmap in R to show z scores of VST-normalized hit counts for each sample relative to the mean count for each gene
across all samples (red: increased, blue: decreased). The arrangement of rows was generated using hierarchical clustering by Euclidian distance. (C-E)
Volcano plots highlighting DEGs at steady state between WT BMDMs and (C) Lyn*©, (D) LynAX®, or (E) LynB*®. In this and other figures, DEGs were
calculated from pairwise comparisons using DESeq2 and defined by an absolute fold-change >1.5 and an adjusted P-value <0.05.

induction of Erk and Akt phosphorylation in Lyn*° BMDMs after
treatment with LPS, with trending decreases in Jnk and Ikk phos-
phorylation (Fig. S4A). Similarly, R848-induced phosphorylation of
Erk,Jnk, and Akt was reduced in Lyn*° BMDMs, and Ikk phosphor-
ylation was not affected (Fig. S4B). These data suggest that Lyn ex-
pression is required for signal transduction downstream of both
TLR4 and TLR7, and the absence of Lyn results in a broad attenu-
ation of TLR-driven signaling rather than selective disruption of
individual receptor-associated pathways.

3.4 Lyn restricts proliferation and promotes
TLR-driven ECM remodeling and inflammatory
responses

To refine our transcriptome-wide analyses of DEGs in WT and
Lyn®© BMDMs, we used GSEA to probe which cellular functions
appear to be most perturbed by the loss of Lyn (Fig. S5). We found

basal enrichment of E2F-targeted gene pathways (Fig. 6A) and
mitotic-spindle-related gene pathways (Fig. 6B) in Lyn*° BMDMs.
As the E2F transcription factor and formation of a mitotic spindle
are key components of cell proliferation,®® we searched the DEG
pool for other pro-mitotic gene products. Indeed, we found that
Lyn*®, but not single-isoform knockout BMDMs, upregulate gene
products promoting DNA synthesis, replication, and repair (eg
Tk1, Top2a, Ligl, Pcna, Mcm5) and mitotic microtubule rearrange-
ment (eg Stmnl, Anln, Nusapl, Tpx2, Melk, Cit, Kif4, Spc25, Prcl,
Ndc80, Plk1, Mad2l1, Espll, Ncapd2, Fig. 6C). To test the functional
consequences of these transcriptional changes, we measured pro-
liferation of WT, LynA*®, LynB*®, and Lyn*® BMDMs in culture.
Consistent with previous findings with Lyn*® BMDMs,®” we ob-
served enhanced proliferation of Lyn*® cells in culture, demon-
strated by more dye dilution in Lyn*® BMDMs than WT (Fig. 6D).
Comparing parental and divided cells at 96 h, we found that
Lyn*© BMDMs were significantly more likely to divide than WT
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(Fig. 6E). Interestingly, though the transcriptional profile of
LynAK© and LynB*° BMDMs only trended toward an intermediate
phenotype, these cells also exhibited a greater degree of prolifer-
ation than WT in culture, an effect likely to be dominated by a dir-
ectresponse to M-CSF in the culture medium, which was absentin
the M-CSF-free medium used for TLR-agonist treatments. Since
neither LynA nor LynB alone is sufficient to restrain cell prolifer-
ation in the presence of M-CSF, it is likely that a higher expression
level of total Lyn protein must be maintained for this process than
for other cellular functions.

GSEA also revealed TLR-induced transcriptional changes in
Lyn*© BMDMs that favor ECM formation. After treatment with ei-
ther LPS (Fig. 7A) or R848 (Fig. 7B), Lyn¥© cells had enhanced ex-
pression of core matrisome genes, with many of these having a
greater magnitude of differential expression than at steady state.
Notably, genes that prompt the synthesis of ECM components and
expansion of the ECM (eg Col4al, Col4a2, Col4a5, Col4a6, Lama3,
Lamas, Fgfrl, Fgf13, Pqf, Plod2) were upregulated in Lyn*© cells,
while those that facilitate ECM degradation (eg Mmp8, Mmp12,
Adamtsl5, Slpi) were downregulated relative to WT (Fig. 7C).
These data suggest that Lyn promotes ECM turnover, and defects
in Lyn can lead to overgrowth of the ECM.

Lastly, GSEA more broadly confirmed the impairment of
TLR-induced inflammatory responses by Lyn*® BMDMs.

Hallmark gene sets for inflammatory response, TNF signaling
via NF-«B, IL-6/JAK/STAT3 signaling, and complement were all
underexpressed in Lyn*© cells after treatment with LPS (Fig. 7D)
or R848 (Fig. 7E). Lyn*® BMDMs had decreased induction of genes
driving inflammatory signaling (eg P2ry13, P2ry14, Clec4n) and
cytokine production (eg Il1a, Il1b, 116, 112D, [123a, Tnf, Tnfsf15) in
tandem with failure to downregulate expression of immunosup-
pressive gene products (eg Lpl, Lrigl, Notch4, Pparg, Sigirr, Fig. 7F).
gRT-PCR analyses revealed significantly decreased transcription
of Il1b and 116 in Lyn*® BMDMs up to 8 h after treatment with
LPS (Fig. S6A) or R848 (Fig. S6B). Tnf induction peaked at earlier
time points, and R848-treated Lyn*® cells had significantly re-
duced transcription of Tnf after 4 h, whereas LPS-treated Lyn*®
cells showed only trending decreases in Tnf transcription. To en-
sure that differences in mRNA expression were translated to the
protein level, we analyzed TLR-induced TNF secretion by
BMDMs after 24 h of treatment with LPS or R848. Quantifying
TNF secretion via ELISA, we found that Lyn®°® BMDMs had dimin-
ished TLR responses, secreting 2-fold less TNF protein than WT
cells after treatment with LPS or R848 (Fig. 7G). Although there
is no isoform-specific contribution to TNF production, TLR4 and
TLR7 require different total amounts of Lyn expression to function
at a WT level— LPS-treated LynAX® and LynB*° BMDMs had im-
paired TNF secretion, albeit to a lesser degree than Lyn*©, whereas
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Fig. 4. Lyn®© BMDMs have impaired upregulation of a
pro-inflammatory transcriptome after TLR stimulation. (A) Venn
diagram defining the subset of genes similarly upregulated or
downregulated after either LPS or R848 treatment of WT and Lyn*©
BMDMs. (B) Heat map showing the highest-significance DEGs in the
subset defined in (A). 41 DEGs were found in common among the 50
highest-significance DEGs between Lyn*® and WT BMDMs after LPS or
R848 treatment. Heat maps and DEGs were compiled as described in
Fig. 2.

the single-isoform Lyn knockouts had no defect in R848-induced
TNF production. We therefore conclude that TLR4 requires higher
levels of Lyn expression than TLR7 to maintain WT-like levels of
signaling. Although whole-animal phenotypes of the single-iso-
form knockouts have sexual dimorphism,34 BMDMs derived
from male and female mice did not have distinct response profiles
at the RNA or protein level.

4, Discussion

In this study we report that macrophage expression of either LynA
or LynB is sufficient to promote TLR sensitivity, expression of ma-
trix remodeling machinery, and inflammatory signaling and that
complete loss of Lyn disrupts these essential macrophage func-
tions. Both at steady state and after treatment with TLR4 or
TLR7 agonist, the expression of either Lyn isoform restores most
of the widespread transcriptomic changes seen in complete Lyn-

knockout macrophages. At steady state, Lyn restricts the expres-
sion of genes driving DNA synthesis and replication, mitosis, and
cell growth, which leads to inhibition of macrophage proliferation
in culture. Interestingly, despite restoring normal expression of
proliferation-related genes, single-isoform expression of Lyn is in-
effective at preventing macrophage hyperproliferation in re-
sponse to M-CSF, suggesting that a full complement of Lyn
expression is necessary for direct signaling beyond simple tran-
scriptomic regulation. Lyn also exerts transcriptional control
over ECM remodeling by driving the expression of genes that pro-
mote ECM degradation and restricting genes that direct the syn-
thesis of structural proteins and ECM components, both at
steady state and after TLR activation. Lastly, Lyn plays an import-
ant role in balancing inflammatory and immunosuppressive sig-
naling pathways downstream of TLRs. Single-isoform expression
of Lyn is sufficient for TLR7-driven cytokine production, while
TLR4-induced TNF production appears to require a full comple-
ment of both LynA and LynB. Regardless, there does not appear
tobe any Lyn isoform specificity in TLR4 or TLR7-induced cytokine
production. Notably, Lyn deficiency does not affect TLR mRNA or
protein expression in macrophages. These findings indicate that
expression of either Lyn isoform is sufficient to maintain most
of the canonical TLR responses and suppress dysregulated ECM
formation in macrophages, although inadequate expression of to-
tal Lyn may be insufficient to fully restore proliferation control.

Transcriptomic enrichment of E2F targets and mitotic spindle
components in Lyn*® cells supports a model in which Lyn defi-
ciency relieves molecular checks on cell-cycle progression, con-
sistent with patterns in DCs,®” myeloid progenitors,®® and
patrolling monocytes.®® The observation that both LynA*® and
LynB*® BMDMs proliferate more than WT, despite lacking robust
transcriptional activation of the same cell-cycle programs, sug-
gests that Lyn may restrain proliferation in a dose-dependent ra-
ther than isoform-specific manner. Furthermore, the marginal
increase in proliferation-associated gene transcription occurring
with a single-isoform deficiency of Lyn may be sufficient to drive
a hyperproliferative response to M-CSF. These findings raise the
possibility that Lyn contributes to the maintenance of macro-
phage quiescence under homeostatic conditions and that loss of
Lyn expression tips the balance toward expansion, even in the ab-
sence of strong mitogenic cues. Given the importance of con-
trolled macrophage turnover in resolving inflammation and
maintaining tissue integrity,”® Lyn may serve as a key regulator
of macrophage population dynamics in both steady state and in-
flammatory settings.

Our study also suggests that Lyn plays an underappreciated
role in controlling ECM dynamics in macrophages. Lyn®©
BMDMs have increased expression of genes encoding collagen
IV, laminins, and ECM crosslinking enzymes and reduced expres-
sion of genes encoding matrix-degrading metalloproteases such
as MMP8 and MMP12. This shift toward an ECM-producing/pre-
serving phenotype could impair immune-cell trafficking and tis-
sue remodeling, contributing to pathological fibrosis. These
transcriptomic findings are consistent with our previous work
showing increased fibrosis in kidneys from aged Lyn¥® mice 3*
Conversely, a macrophage phenotype that promotes ECM synthesis
and limits ECM degradation may be beneficial in suppressing cancer
growth and metastasis. The ECM plays a complex role in cancer pro-
gression, where increased matrix breakdown can promote cancer-
cell growth and metastasis, yet a thickened ECM can impair respon-
siveness to chemotherapy.”* On the other hand, a collagen-rich ECM
might suppress cancer growth by limiting the availability of oxygen
and nutrients.”? Lyn expression in macrophages within the tumor
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Fig. 5. LPS- and R848-induced expression patterns are affected differentially by Lyn knockout in BMDMs. (A) Venn diagram highlighting LPS-specific
DEGs in WT and Lyn*® BMDMs. (B) Heat map showing the 50 highest-significance LPS-specific DEGs in WT and Lyn*° BMDMs. (C) Venn diagram
highlighting R848-specific DEGs in WT and Lyn*® BMDMs. (D) Heat map showing the 50 highest-significance R848-specific DEGs in WT and Lyn*®

BMDMs. Heat maps and DEGs were compiled as described in Fig. 2.

microenvironment promotes cancer-cell growth, and Lyn-deficient
macrophages delay the progression of chronic lymphocytic leuke-
mia and prolong patient survival.”® Furthermore, Lyn-deficient stro-
mal fibroblasts reduce cancer growth by acquiring a myofibroblastic
phenotype, characterized by increased ECM formation and reduced
production of inflammatory cytokines.”* Thus, treatments targeting
Lyn-mediated pathways in macrophages within tumors may prove
beneficial in reducing cancer growth and metastasis by reducing
ECM remodeling and limiting inflammation.

The impaired inflammatory response of Lyn-deficient macro-
phages underscores the importance of Lyn as a positive driver of
immune signaling. While several studies have shown that Lyn

inhibits TLR signaling in classical DCs and B cells,*"* our find-

ings align with reports indicating that Lyn is required for optimal
TLR-induced cytokine production in macrophages.*®*” 491 A few
studies provide mechanistic hints into the TLR-promoting func-
tion of Lyn. In mast cells, Lyn drives TLR4-induced transcription
of inflammatory cytokines, such as TNF, by associating with
TRAFS6, leading to TRAF6 polyubiquitination and TAK1 phosphor-
ylation, thereby driving IKK and MAPK activation.” Lyn*° mast
cells have reduced TLR4-induced phosphorylation of NF-kB, Erk,
Jnk, and p38.°! We also found impaired TLR-induced phosphoryl-
ation of Erk and Jnk in Lyn*© cells, indicating that Lyn functions
upstream of the NF-xB and MAPK pathways, potentially by
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Fig. 6. Lyn*© BMDMs have enhanced proliferation at steady state. (A, B) GSEA showing enrichment of (A) E2F-targeted and (B) mitotic-spindle-related
genes in Lyn*® BMDMs at steady state. (C) Heat map of the 20 highest-significance DEGs related to proliferation in WT and Lyn*® BMDMs. Heat maps
and DEGs were compiled as described in Fig. 2. (D) Representative flow cytometry histograms showing CTV fluorescence in BMDMs immediately after
dye loading or after 96h culture in M-CSF-containing medium. (E) Quantification of parental and dividing cells after 96h
(n=3). The parent generation was identified by the CTV peak at t=0, and subsequent generations were identified using FlowJo software. Data are

presented as mean + standard deviation. Significance was assessed via two-way ANOVA with Tukey’s multiple comparisons test. P values 0.01-0.03%,

0.007**, 0.001***. There were no significant differences between non-annotated pairs. n =3 biological replicates derived from different mice.

facilitating TRAF6 activation. Lyn functions similarly in macro-
phages®® and pDCs,*® promoting TLR2- and TLR7-induced NF-«xB
activation and cytokine production, dependent on kinase activity.
Interestingly, Lyn-mediated PI3K phosphorylation, resulting in
Akt phosphorylation and culminating in NF-xB activation, may
also explain how Lyn facilitates TLR signaling in macro-
phages.**° Concordantly, we saw impaired P-Akt induction in
Lyn®© BMDMs after TLR4 and TLR7 stimulation. Of note, Lyn
may also mediate JAK/STAT signaling and responses to cytokines,
such as IL-6, themselves.”® Thus, it may be difficult to uncouple
differences from autocrine cytokine signaling with those from dir-
ect TLR activation, especially at longer time points. Our GSEA did
suggest impaired IL6/JAK/STAT signaling in TLR-treated Lyn*©
BMDMs, however, using a 2-h treatment, our RNA sequencing
data likely reflect differences in direct, TLR-induced signaling.
One limitation of our study is its reliance on M-CSF-derived mac-
rophages, where developmental consequences of CSF-1R

signaling may affect later TLR responses in M-CSF-starved cells.
Given that Lyn*© cells are hyperresponsive to M-CSF,* it is worth
considering that negative feedback loops may be induced by
chronic, hyperactive CSF-1R activation and could exert an inhibi-
tory effect on TLR signaling.

It is not clear why the loss of Lyn expression has opposite con-
sequences in macrophages and DCs, with ligation of TLRs in Lyn*®
splenic DCs driving increased cytokine production.® %4243 1yn
has a specific role in inhibiting Type-I IFN production by phos-
phorylating IRFs, leading to their polyubiquitination and degrad-
ation.*® This is dependent on the kinase activity of Lyn and
regulated by the negative regulator of the Src-family-kinases,
Csk.*? The mechanism by which Lyn affects other TLR signaling
pathways is less well understood, but Lyn can act downstream
of MYD88*” and CARD9%® to inhibit NF-xB and MAPK activation
in DCs. This inhibitory role of Lyn is also dependent on Hck and
Fgr.®® This finding provides one possible explanation for the
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Fig. 7. Lyn*? BMDMs have enhanced expression of genes driving ECM synthesis and impaired inflammatory cytokine production after TLR stimulation.
(A, B) GSEA showing enrichment of core matrisome genes in Lyn*® BMDMs relative to WT after treatment with (A) LPS or (B) R848. (C) Heat map of the 15
highest-significance DEGs related to ECM formation in WT and Lyn*® BMDMs. (D, E) GSEA showing enrichment of inflammatory response genes in WT
and Lyn®°® BMDMs after treatment with (D) LPS or (E) R848. (F) Heat map of the 15 highest-significance DEGs related to inflammatory response in WT and
Lyn*© BMDMs. Heat maps and DEGs were compiled as described in Fig. 2. (G) ELISA showing TNF production by WT, LynAX®, LynBX°, and complete
Lyn*® BMDMs at steady state and after 24 h treatment with 2 ng/ml LPS or 20 ng/ml R848 (n=6). Data are presented as mean + standard deviation.
Significance was assessed via two-way ANOVA with Tukey’s multiple comparisons test. P-value <0.05*, <0.01*, <0.001**, <0.0001***, with all other
pairwise comparisons lacking significant differences. Outlier analysis was performed using unbiased ROUT with Q = 1%. n indicates the number of
biological replicates, with cells from different individual mice. Squares indicate cells derived from male mice, and circles indicate cells derived from

female mice.

differing roles of Lyn in macrophages/pDCs and cDCs.
Macrophages and pDCs have lower expression of Hck than do
cDCs* and may not be equipped to recruit other SFKs as compen-
satory drivers of TLR signaling. Thus a loss of Lyn in macrophages
may function similarly to a loss of Lyn and Hck in cDCs. Indeed,
Lyn/Hck/Fgr triple knockout DCs produce fewer cytokines than
do WT DCs following TLR stimulation,* similarly to Lyn*® macro-
phages. Furthermore, overexpressing Hck in Lyn*® macrophages
increases TLR4-induced production of TNF and IL-6.*% Other pos-
sible explanations of opposite Lyn function in these two cell types
may relate to differential expression of binding partners, other
negative regulators (eg the inositol phosphatase SHIP1), or TLR
adaptor proteins.

Nevertheless, our findings suggest that the inflammatory
phenotype observed in Lyn*® mice may be driven predominantly
by immune cells outside the macrophage lineage or by
cell-extrinsic effects on macrophages in vivo. For instance,
macrophage-related pathologies in Lyn*® mice, such as glomer-
ulonephritis, may arise from the exacerbated inflammatory envir-
onment created by dysregulated, Lyn-deficient DCs*”*® and
mature B cells**° rather than spontaneous inflammatory signal-
ing by Lyn®© macrophages.

We show that either LynA or LynB can promote TLR-induced
cytokine production in macrophages. Partially impaired
TLR4-driven TNF production in macrophages with single-isoform
Lyn expression likely results from reduced levels of total Lyn in
these cells, indicating a dose-dependent rather than isoform-
specific requirement for signaling. This is supported by a previous
observation that even a partial loss of Lyn can promote B-cell dys-
regulation and autoimmunity.”® Defining how Lyn modulates sig-
naling thresholds across different myeloid subsets and
downstream of different receptors will be a critical step in resolv-
ing these apparent contradictions and elucidating how Lyn or-
chestrates balanced immune responses.

Our findings support a model in which Lyn acts as a positive
regulator of macrophage activation downstream of TLRs, while
simultaneously serving as a brake on pathological proliferation
and ECM accumulation. These dual roles may reflect a broader
homeostatic function for Lyn in tuning macrophage responses
to inflammatory stimuli, enabling robust immune activation
while limiting myeloid-cell expansion and tissue fibrosis. Given
that expression of either LynA or LynB alone can restore many
macrophage functions to WT-like levels, therapies aimed at
boosting total Lyn expression or function could offer greater
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benefit than isoform-specific modulation. Future studies dissect-
ing the mechanistic contributions of LynA and LynB to specific sig-
naling nodes—particularly their interactions with adaptor
proteins and downstream kinases—will be essential for translat-
ing these insights into therapeutic approaches.
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Supplemental Figure 1. WT, LynAX°, and LynBX® BMDMs have few transcriptomic differences. Heat
maps with all significant DEGs between WT and either LynAX® or LynB*® BMDMs (A) at steady state or
(B-C) after 2 h LPS or R848 treatment. (B) DEGs similarly upregulated or downregulated after treatment
with TLR agonist. (C) DEGs specific to LPS or R848 treatment. Heat maps and DEGs were compiled as
described in Fig. 2.
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Supplemental Figure 2. LPS and R848 have differential impacts on gene transcription in WT
BMDMs. (A inset) gRT-PCR analysis of Tnf expression in response to 2 h treatment with 2 ng/ml LPS or
20 ng/ml R848. Significance was assessed via one-way ANOVA with Tukey’s multiple comparisons test:
***P = 0.0002-0.0003. There was no significant difference (ns) between LPS and R848 conditions
(P=0.9669). (A-C) Volcano plots highlighting DEGs in (A) LPS- or R848-treated WT BMDMs relative to
each other, (B) LPS-treated relative to steady-state, or (C) R848-treated relative to steady-state. DEGs
were calculated as described in Fig. 2.
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Supplemental Figure 3. Lyn knockout does not affect TLR4 or TLR7 expression by BMDMs. (A)
RNA-sequencing data showing VST-normalized hit-counts of TIr4, TIr7, and TLR adaptors in BMDMs at
steady state (red: higher expression). (B) Representative flow-cytometry histograms showing protein
expression of surface TLR4 and intracellular TLR7 in BMDMs. (C) Quantified flow-cytometry data showing
relative TLR expression in WT and Lyn-deficient BMDMs, comparing the geometric mean fluorescent
intensity for each sample to that of WT within each experiment (n=7 biological replicates over 3
experimental days). No significant differences were observed.
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Supplemental Figure 4. Lyn¥® BMDMs have impaired induction of MAPK and Akt pathways after
TLR4 and TLR7 stimulation. Representative immunoblots showing phosphorylation of downstream
signaling proteins in WT and Lyn*® BMDMs at steady state and after 15 and 30 min treatment with (A) 2
ng/ml LPS or (B) 20 ng/ml R848. Lysates from BMDMs treated with agonist (+) or medium alone (-) are
shown. Quantifications of P-Erk, P-Jnk, P-lkk, and P-Akt are corrected for total protein staining in each gel
lane and shown relative to the untreated t=0 sample within each genotype (n=4). Total Erk reflects protein
loading. Data are presented as mean + SEM. Significance was assessed via two-way ANOVA comparing
WT and Lyn*® agonist-treated cells with Tukey’s multiple comparisons test. p <0.05 *, <0.01 **, <0.001 ***,
<0.0001 ****, with no significant differences other than those indicated. n indicates the number of biological
replicates, with cells from different individual mice.
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Supplemental Figure 5. Enrichment of cell-cycle and matrix-assembly pathways in Lyn*® BMDMs
and enrichment of inflammatory and catabolic pathways in WT. Graphical summary of GSEA
performed on RNA-sequencing data from WT and Lyn*® BMDMs at steady state and after LPS or R848
treatment (n=4). Bar plots show normalized enrichment scores (NES) for significantly enriched pathways
identified using GSEA, with hallmark and curated gene sets from the MSigDB. Positive NES values (red)
indicate enrichment in Lynk®; negative NES values (blue) indicate enrichment in WT. Significance was
defined by a nominal p-value <0.1. n indicates the number of biological replicates per genotype (each from

a different mouse) and treatment.
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Supplemental Figure 6. Lyn¥® BMDMs have a defect in maximum cytokine induction rather than a
kinetic defect. (A-B) gRT-PCR showing Tnf, ll1b, 116, and 1112b expression by WT and total Lyn*® BMDMs
at steady state (-) and after 2, 4, and 8 h treatment (+) with (A) 2 ng/ml LPS or (B) 20 ng/ml R848 (n=4).
Data are presented as mean + SEM. Significance was assessed via two-way ANOVA with Tukey’s multiple
comparisons test. p-value <0.05 *, <0.01 **, <0.001 ***, <0.0001 ****, with all other pairwise comparisons

lacking significant differences. n is the number of biological replicates, with cells from different mice.
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